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ABSTRACT

Quark and lepton masses in technicolor theories can be enhanced if the
high energy, extended technicolor (ETC) interactions play an important role
in electroweak symmetry breaking. This happens when the ETC coupling and
the technicolor gauge coupling at high energies lie close to a certain critical line.
The enhancement has been associated with the existence of composite scalars
made mainly of technifermions, with masses small compared to the ETC scale.
The initial study of these states was carried out with the technicolor gauge
coupling neglected. In this paper we investigate the properties of such scalars
including the technicolor gauge interactions. We find that for realistic values
of the gauge coupling, the scalars will not be narrow resonances.

The recent revival of interest in technicolor theories of electroweak symmetry
breaking has been stimulated partly by the observation that momentum components
well above the confinement scale Λtc can play a more important role than they do in
QCD. In particular the higher energy extended technicolor (ETC) interactions, which
must be present to generate the masses of ordinary fermions, can play an important
direct role, along with the technicolor interactions, in the electroweak breaking, leading
to even larger fermion masses.1,2 This can take place only if the combination of the ETC
coupling and the technicolor coupling at the ETC scale is sufficiently close to a certain
critical curve.3 Here we summarize a study of the light composite scalars generated by
near-critical high energy interactions. We conclude that unless the technicolor coupling
at the ETC scale is unrealistically weak and the ETC coupling is very close to the
critical curve, these light states will have large widths.

We consider a single doublet of technifermions Ψ = (U,D) subject to a confining
technicolor force and an additional attractive ETC interaction. The latter is approxi-
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mated by an effective, SU(2)L × U(1) invariant, four-fermion coupling

L4f =
8π2λ

NtcΛ2
(Ψ̄i

LUR)(ŪRΨi
L) , (1)

where i is a summed SU(2)L index,Ntc is the number of technicolors, Λ is the ETC mass
scale, and λ is the interaction strength of the ETC interactions. Implicit technicolor
indices are also summed in each fermion bilinear.

We begin by recalling some features of dynamical chiral symmetry breaking driven
by the combination of gauge and four-fermion interactions. Suppose that the physics
of interest takes place at energies well above the confinement scale Λtc. It should be
possible to describe this physics in terms of λ and α ≡ α(Λ) (the technicolor coupling
at the ETC scale). With the running of α neglected, dynamical mass generation can
be studied in linearized ladder approximation.3,4 Analysis of the gap equation for the
dynamical mass Σ(p) of the U fermion in the α, λ plane3 reveals that a critical curve
separates the broken phase (Σ 6= 0) from the symmetric phase (Σ = 0). For λ ≤ 1/4,
the broken phase exists only for α > αc ≡ π/3C2(R), where C2(R) is the Casimir of
the fermion representation. For λ ≥ 1/4, the critical curve separating the two phases
is defined by

λα =
[
1

2
+

1

2
η
]2

, (2)

where η ≡
√

1− α/αc. The broken phase then exists only for λ > λα.
When the running of the technicolor gauge coupling is re-introduced, the distinc-

tion between broken and symmetric phases is blurred. The growth of the coupling at
momenta near Λtc will in fact always break the chiral symmetry. The critical curve in
λ and α is therefore, loosely speaking, the dividing line between the regime where the
high energy interactions (four-fermion and technicolor combined) are able to break the
symmetry, where typically Σ(0) ∼ Λ, and the low energy breaking regime, where typi-
cally Σ(0) ∼ Λtc � Λ. It is this regime, where the spontaneous breaking is dominated
by the “low energy” technicolor interaction, that is of principal interest in this paper.
There it has been shown that for a range of λ near λα, the high energy mass of the
technifermion Σ(Λ) takes the form2

Σ(Λ) ∼ 4π2λ < ψ̄ψ >λ=0

Λ2(1− λ/λα)
. (3)

Here, < ψ̄ψ >λ=0 is the technifermion condensate in a pure technicolor theory normal-
ized at Λ. If an ordinary fermion (quark or lepton) is coupled to the technifermion by
an ETC interaction with strength of order λ/Λ2, then its mass is also given by Eq. 3.
This expression exhibits the ETC-driven mass enhancement as λ → λα. It will break
down once Λ(1− λ/λα)1/2 ∼ Λtc.

In Ref. 5, it was suggested that this enhancement can be attributed to the ex-
istence of a light scalar particle of mass M ∼ Λ(1 − λ/λα)1/2. It couples to the tech-



nifermion and then develops a vacuum value due to the technicolor interactions, pro-
ducing a “tadpole” diagram, thus leading to Eq. 3. The discussion of scalar formation
in Ref. 5 was restricted to a pure four-fermion theory, i.e. a Nambu-Jona-Lasinio (NJL)
model.6 Here we include the technicolor gauge interactions and specifically address the
issue of the existence of a light physical scalar.

The effective four-fermion interaction in Eq. 1 can be eliminated in favor of four
auxiliary scalar fields,7 each with mass Λ. The question of whether light scalars exist as
narrow or even broad resonances can be addressed by constructing the inverse scalar
propagator ∆−1(p), for the auxillary field σ, which couples to UŪ , for example. To
compute ∆−1(p), we will evaluate Feynman graphs with two scalars coupled to one
fermion loop with any number of ladder gauge boson exchanges,7 and with external
momentum p on the scalar legs. This requires knowledge of Γ(p, k), the 1PI σUŪ vertex
with momentum p flowing along the scalar line. In the full ladder approximation, and
neglecting derivatives of Γ(p, k) (details are given in ref. 7) ∆−1(p) can be expressed in
terms of Γ(0, k). Using the known form8 of Γ(0, k):

Γ(0, k) =
1

1
2

+ 1
2
η

(
k2

Λ2

)− 1
2
+ 1

2
η

, (4)

we find

∆−1(p) = −Λ2

(
a
p2

Λ2
+ b

(
p2

Λ2

)η

[cos(ηπ)− i sin(ηπ)] + 1− λ

λα

)
, (5)

where

a =
λ

2λα(1− η)
, (6)

b =
λ

λαη(1− η2)
. (7)

In the regime λ < λα of special interest here, the zero-momentum limit of the scalar
inverse propagator gives the “zero-momentum mass”

M(0) = Λ(1− λ/λα)1/2 . (8)

M(0) will be small compared to Λ if nature provides us with a λ close to λα. Thus we
recover the fermion mass enhancement formula (Eq. 3).

Before proceeding further, we examine some simple limiting cases. In the NJL
limit (α→ 0) it can be shown that Eq. 5 reproduces the usual logarithmically supressed
width to mass ratio. For the more realistic case of finite α, we examine the location of
the poles of the propagator as λ approaches λα. The poles occur for complex p2 so we
set p2 = p2

0 exp(−iθ). For η < 1, and λ very close to λα, we can neglect p2

Λ2 relative to(
p2

Λ2

)η
in the real part of ∆−1(p). We then find zeros of ∆−1(p) at

p0 ≈ Λ

1− λ
λα

b

 1
2η

, (9)



θ ≈
(
m− η

η

)
π +

a sin(m−η
η
π)

bη

1− λ
λα

b


1−η

η

, (10)

where m is an odd integer. We expect the physical pole to correspond to m = 1, since
it is the closest pole to the physical region.

We next consider under what conditions the scalar resonance will be narrow. ∆(p)
will describe a narrow resonance if θ is small. (In this case, the width to mass ratio is
approximately equal to θ.) When is θ in fact small? We first observe that for finite α
(η < 1), θ (Eq. 10) does not approach zero as λ → λα. Therefore, the width to mass
ratio is not suppressed (as in the NJL case) as the critical curve is approached. For
small but nonzero α, this expression gives θ → α

2αc
π as λ→ λα. Thus, as the mass scale

of the scalar state is made small by approaching the critical curve, it is not described
by a narrow Breit-Wigner resonance unless α is quite small.

Having considered these special limiting cases, we now consider more generic
values of the coupling constants. A description of the resonance structure of the theory
is provided by a plot of Im ∆(p) (Fig. 1). The two figures correspond to different values
of M(0)/Λ = (1− λ/λα)1/2; in each case, a resonant curve exists for the smallest value
of α/αc, peaked at a momentum smaller than M(0). As α/αc is increased the curve
shifts down (relative to M(0)) and broadens (relative to the position of the peak).

Fig. 1. Graphs of Im ∆(p) for different values of λ/λα and α/αc. The curves in each graph
are normalized so that the peak value of the α/αc = 0.01 curve equals 1.

As a specific example, consider the case in which λ is tuned to within 1% of λα

(Fig. 1a), giving M(0)/Λ ≈ 1/10. If Λ is in a range between, say, 30 TeV and 1000 TeV,



and if the technicolor coupling either runs normally or walks at a rate attainable in a
realistic theory, α/αc will be somewhere between roughly 0.2 and 0.5. This is a range
within which a broad Breit-Wigner curve exists, peaked roughly around 0.3M(0), with
a full width at half maximum of roughly the same order. Even with a great deal of fine
tuning (Fig. 1b), the width to mass ratio will only be small if α is unrealistically small
for a technicolor theory.

To understand the origin of these results, it is convenient to frame the discussion
in terms of the wavefunction renormalization factor Z of the scalar. In the NJL limit, Z
is sensitive to high momentum components and is proportional to ln Λ2/p2. The scalar
couplings to fermions are inversely proportional to Z1/2. Therefore, these states are
weakly coupled, so it is not surprising that they can be narrow. The effect of the gauge
interaction is to shift the sensitivity of Z towards the infrared; Z1/2 is then proportional
to (Λ2/p2)1/2−η/2. This large denominator factor, however, will be cancelled by Γ(0, k)
(Eq. 4), which also enters into the computation of the widths. There is therefore no
reason for the resonances to be narrow.

To conclude, we have studied the properties of light composite scalars which are
present in technicolor theories with near-critical ETC interactions. We have shown that
these scalars will not be narrow resonances for realistic values of the technicolor gauge
coupling.
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